Home

персонал раса избор kappa opioid inhibition of morphine and cocaine self administration in rats миньор дали През

Effects of Mixed-Action κ/μ Opioids on Cocaine Self-Administration and  Cocaine Discrimination by Rhesus Monkeys | Neuropsychopharmacology
Effects of Mixed-Action κ/μ Opioids on Cocaine Self-Administration and Cocaine Discrimination by Rhesus Monkeys | Neuropsychopharmacology

Locomotor activity: A distinctive index in morphine self-administration in  rats | PLOS ONE
Locomotor activity: A distinctive index in morphine self-administration in rats | PLOS ONE

Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor:  Trends in Pharmacological Sciences
Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor: Trends in Pharmacological Sciences

Systemic nicotine enhances opioid self-administration and modulates the  formation of opioid-associated memories partly through actions within the  insular cortex | Scientific Reports
Systemic nicotine enhances opioid self-administration and modulates the formation of opioid-associated memories partly through actions within the insular cortex | Scientific Reports

Fentanyl vapor self-administration model in mice to study opioid addiction  | Science Advances
Fentanyl vapor self-administration model in mice to study opioid addiction | Science Advances

Molecules | Free Full-Text | Kappa Opioid Receptor Agonist Mesyl Sal B  Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive  Side-Effects than Salvinorin A in Rodents | HTML
Molecules | Free Full-Text | Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents | HTML

Interactions between Kappa Opioid Agonists and Cocaine: Preclinical Studies  - MELLO - 2000 - Annals of the New York Academy of Sciences - Wiley Online  Library
Interactions between Kappa Opioid Agonists and Cocaine: Preclinical Studies - MELLO - 2000 - Annals of the New York Academy of Sciences - Wiley Online Library

Frontiers | The Kappa Opioid Receptor: From Addiction to Depression, and  Back
Frontiers | The Kappa Opioid Receptor: From Addiction to Depression, and Back

Signaling Properties of Structurally Diverse Kappa Opioid Receptor Ligands:  Toward in Vitro Models of in Vivo Responses | ACS Chemical Neuroscience
Signaling Properties of Structurally Diverse Kappa Opioid Receptor Ligands: Toward in Vitro Models of in Vivo Responses | ACS Chemical Neuroscience

Effects of Mixed-Action κ/μ Opioids on Cocaine Self-Administration and  Cocaine Discrimination by Rhesus Monkeys | Neuropsychopharmacology
Effects of Mixed-Action κ/μ Opioids on Cocaine Self-Administration and Cocaine Discrimination by Rhesus Monkeys | Neuropsychopharmacology

The Role of Dynorphin and the Kappa Opioid Receptor in the Symptomatology  of Schizophrenia: A Review of the Evidence - Biological Psychiatry
The Role of Dynorphin and the Kappa Opioid Receptor in the Symptomatology of Schizophrenia: A Review of the Evidence - Biological Psychiatry

κ Opioid Receptors in the Nucleus Accumbens Shell Mediate Escalation of  Methamphetamine Intake | Journal of Neuroscience
κ Opioid Receptors in the Nucleus Accumbens Shell Mediate Escalation of Methamphetamine Intake | Journal of Neuroscience

Frontiers | Opioid Receptor-Mediated Regulation of Neurotransmission in the  Brain
Frontiers | Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain

Frontiers | A Review of the Therapeutic Potential of Recently Developed G  Protein-Biased Kappa Agonists
Frontiers | A Review of the Therapeutic Potential of Recently Developed G Protein-Biased Kappa Agonists

Effects of the Kappa-opioid Receptor Agonist, U69593, on the Development of  Sensitization and on the Maintenance of Cocaine Self-administration |  Neuropsychopharmacology
Effects of the Kappa-opioid Receptor Agonist, U69593, on the Development of Sensitization and on the Maintenance of Cocaine Self-administration | Neuropsychopharmacology

κ Opioid Receptor Antagonism and Prodynorphin Gene Disruption Block  Stress-Induced Behavioral Responses | Journal of Neuroscience
κ Opioid Receptor Antagonism and Prodynorphin Gene Disruption Block Stress-Induced Behavioral Responses | Journal of Neuroscience

Frontiers | Cebranopadol, a Mixed Opioid Agonist, Reduces Cocaine Self- administration through Nociceptin Opioid and Mu Opioid Receptors
Frontiers | Cebranopadol, a Mixed Opioid Agonist, Reduces Cocaine Self- administration through Nociceptin Opioid and Mu Opioid Receptors

Deep brain stimulation of the nucleus accumbens shell attenuates cocaine  withdrawal but increases cocaine self-administration, cocaine-induced  locomotor activity, and GluR1/GluA1 in the central nucleus of the amygdala  in male cocaine-dependent rats -
Deep brain stimulation of the nucleus accumbens shell attenuates cocaine withdrawal but increases cocaine self-administration, cocaine-induced locomotor activity, and GluR1/GluA1 in the central nucleus of the amygdala in male cocaine-dependent rats -

Effects of Kappa Opioid Receptor Agonists on Fentanyl vs. Food Choice in  Male and Female Rats: Contingent vs. Non-Contingent Administration | bioRxiv
Effects of Kappa Opioid Receptor Agonists on Fentanyl vs. Food Choice in Male and Female Rats: Contingent vs. Non-Contingent Administration | bioRxiv

Fentanyl vapor self-administration model in mice to study opioid addiction  | Science Advances
Fentanyl vapor self-administration model in mice to study opioid addiction | Science Advances

Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic  Plasticity - ScienceDirect
Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic Plasticity - ScienceDirect

A single, extinction-based treatment with a kappa opioid receptor agonist  elicits a long-term reduction in cocaine relapse | Neuropsychopharmacology
A single, extinction-based treatment with a kappa opioid receptor agonist elicits a long-term reduction in cocaine relapse | Neuropsychopharmacology

κ-opioid receptor - Wikipedia
κ-opioid receptor - Wikipedia

Morphine self-administration (MSA) is increased in irradiated rats. (a)...  | Download Scientific Diagram
Morphine self-administration (MSA) is increased in irradiated rats. (a)... | Download Scientific Diagram

Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity | Journal of  Medicinal Chemistry
Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity | Journal of Medicinal Chemistry

Self-Administered Heroin and Cocaine Combinations in the Rat: Additive  Reinforcing Effects—Supra-Additive Effects on Nucleus Accumbens  Extracellular Dopamine | Neuropsychopharmacology
Self-Administered Heroin and Cocaine Combinations in the Rat: Additive Reinforcing Effects—Supra-Additive Effects on Nucleus Accumbens Extracellular Dopamine | Neuropsychopharmacology